Using Analytical

The Analytical module of FELIX assists chemists in resonance assignment for small molecules. It includes controls for structure display, spin system detection, and manual assignment of 1D/2D peaks to atoms.

In Lesson 1: Resonance assignment of brucine, you will learn the basic steps involved in assigning a natural product using conventional 2D spectra.


Lesson 1: Resonance assignment of brucine

This lesson presents the basic steps of an NMR spectrum assignment using prepared 1D and 2D data: the H-1, DEPT-135, TOCSY, and HMQC spectra, of brucine (MF: C23H26N2O4) and its structural diagram prepared with ISIS/Draw).

The topics covered in this lesson are:

1.   Setting up for the lesson

These files from the $BIOSYM/tutorial/felix directory are required for this lesson. Please copy them to your working directory:

br_h1.dat
br_dept.dat
br_hmqc.mat
br_tocsy.mat
br_dept.txt
br_hmqc.txt
br_tocsy.txt
brucine.mol

2.   Starting FELIX

In your working directory, enter felix at the system prompt to start the program. If you get the RESTORE LAST SESSION dialog box, select CANCEL.

Select File/Open and set File Type to DBA. From the Files list specify br.dba and select OK to build a new database.

3.   Going to the Analytical module

Select the Analytical/Project menu item from the menubar.

4.   Setting up the database

When FELIX informs you that no project was found, select OK, and FELIX will prompt you for a new project.

In the control panel, the default name of the project is asg:project. You can enter another name if you want (e.g., br:project).

This procedure typically takes several seconds.

5.   Viewing the project entity through a spreadsheet

Select the Analytical/Project menu item again.

The project entity is presented in a spreadsheet, and you can browse through its fields.

Many fields contain zeros or nulls, since the project is not fully defined yet. Also note that there are twelve experiment columns, meaning that you can define twelve experiments in one project.

6.   Adding the 1D H-1 experiment to the project

Two ways of adding experiments to a project are shown in Steps 6-9 of this lesson.

Select File/Open from the main menu. In the OPEN FILE control panel, select FELIX New Data (*.dat) as the File Type. When the list of names of 1D spectra in the current directory appears, select br_h1.dat (the H1 spectrum). Select OK.

Select the Analytical/Experiment menu item. In the Add Analytical Experiment control panel, type h1 as Experiment Title and toggle Take Current to on. Select OK.

This adds the currently displayed H1 experiment to the project.

In the ADD EXPERIMENT #1 TO br:project control panel, set these parameter values for the h1 experiment:

Use Default Names On
Peak Table pic:h1
Type 1D H-1
Temp 350.0
pH 7.0
Solvent CDCl3
Nucleus H1
Tolerance 0.01

Select OK.

This adds the H1 experiment to the project with the current display parameters. You can change the display parameters using the Experiment/Change Attribute menu item in the Experiments table (select the Analytical/Experiments menu item to display the Experiments table).

7.   Adding the DEPT-135 experiment to the project

Select the Analytical/Experiment... item in the main menu to open the Analytical Experiments table. In the table, make sure that one row is highlighted (otherwise it will not work) and select the Experiment/Add menu item.

In the ADD ANALYTICAL EXPERIMENT control panel, enter dept as Experiment Title and toggle Take Current to off. Select OK.

In the OPEN FILE control panel, choose FELIX New Data (*.dat) as File Type. When the list appears with names of 1D spectra in the ./ directory, select br_dept.dat (the 1D DEPT spectrum). Select OK

In the PLOT PARAMETERS control panel, leave the default values for all parameters and select OK.

In the ADD EXPERIMENT #2 TO br:project control panel, set these parameter values for the DEPT experiment:

Use Default Names On
Peak Table pic:dept
Type 1D C-13 DEPT-135
Temp 300.0
pH 7.0
Solvent CDCl3
Nucleus C-13
Tolerance 0.1

Select OK.

Select the File/Import/Peaks... item from the main menu. In the control panel, make sure that FELIX Peak Table Name is pic:dept. When the list appears with names of the peak files (.txt) in the ./ directory, select br_dept.txt (the DEPT peak table). Select OK to import the DEPT peaks.

The peaks are labelled on the DEPT spectrum. The C13 peaks are also listed in the spreadsheet table Peaks - pic:dept.

Select the File/Close menu item from the table to close it.

This demonstrates two ways of adding experiments to a project: you can add the currently displayed experiment or a saved experiment.

8.   Repeating Step 6 for the HMQC experiment

Select the File/Open item from the main menu. In the OPEN FILE control panel, select Matrix (*.mat) as File Type. When the list appears with matrix names of 2D spectra in the ./ directory, select br_hmqc.mat (the HMQC spectrum). Select OK.

Adjust the display of the spectrum until it is satisfactory.

Select the File/Import/Peaks... item from the main menu. Make sure that FELIX Peak Table Name is xpk:hmqc. When the list appears with names of the peak files (.txt) in the ./ directory, select br_hmqc.txt (the HMQC peak file). Select OK to import the HMQC peaks.

The peaks are labelled on the HMQC spectrum. The HMQC peaks are also listed in the spreadsheet table Peaks-xpk:hmqc.

Select the File/Close menu item from the table to close it.

If the Analytical Experiments table is not open, select the Project/Experiment menu item again to open it. From the table select Experiment/Add.

In the Add ANALYTICAL EXPERIMENT control panel, enter hmqc as Experiment Title and toggle Take Current to on. Select OK.

This adds the currently displayed HMQC experiment to the project.

In the ADD EXPERIMENT #3 TO br:project control panel, set these parameter values

Use Default Names On
Peak Table xpk:hmqc
Experiment Type 2D HMQC/HSQC/HETCOR
D1 Nucleus H-1
Tolerance 0.011
D2 Nucleus C-13
Tolerance 0.08
W1 D1
W2 D2
W1-W2 Transfer J-coupled
# of J steps 1

Select OK.

The HMQC spectrum is added to the project.

9.   Repeating Step 7 for the TOCSY spectra

Go to the Analytical Experiments spreadsheet menubar.

If it is not open, select Analytical/Experiments to open it.

Select the Experiment/Add menu item.

In the Add ANALYTICAL EXPERIMENT control panel, enter tocsy as Experiment Title and turn off the Take Current toggle. Select OK.

This opens a TOCSY spectrum.

In the OPEN FILE control panel, choose Matrix (*.mat) as File Type. When the list appears with names of 2D spectra in the ./ directory, select br_tocsy.mat (the 2D TOCSY spectrum). Select OK.

In the 2D DISPLAY PARAMETERS control panel, click the Set button if you find the display satisfactory. Otherwise you can click the Full button to display the full spectrum or the Zoom button to zoom in on a certain spectral region. If the display is still not satisfactory, click No in the GENERAL MESSAGE control panel to return to the 2D DISPLAY PARAMETERS control panel.

If the HMQC peak labels are displayed on the spectrum, ignore them for now.

In the ADD EXPERIMENT #4 TO br:project control panel, set these values:

Use Default Name on
Peaks Table xpk:tocsy
Experiment Type 2D TOCSY
D1 Nucleus H-1
Tolerance 0.008
D2 Nucleus H-1
D1 Nucleus 0.008
W1 D1
W2 D2
W1-W2 Transfer J-coupled
Number of J Steps 7

Leave the remaining parameters set to their defaults. Select OK

Select the File/Import/Peaks... item from the main menu. Make sure that FELIX Peak Table Name is xpk:tocsy. When the list appears with names of the peak files (.txt) in the ./ directory, select br_tocsy.txt (the TOCSY peak table). Select OK.

This imports the TOCSY peaks.

The peaks are labelled on the TOCSY spectrum. The peaks are also listed in the spreadsheet table Peaks-xpk:tocsy.

Select the File/Close menu item from the table to close it.

10.   Checking the project entity

Check the project entity after all experiments are added, as described in Step 5.

The previously zero or null fields now have values.

11.   Drawing the full HMQC spectrum

Now go to the Experiments table and select the hmqc spectrum by clicking the third row and then clicking the Select Experiment icon.

Now click the Full Plot icon to draw the full HMQC spectrum.

12.   Performing prototype pattern detection

Select the Analytical/Collect Prototype Patterns menu item. From the control panel, select the HMQC+TOCSY as the Method (the default value) and make sure that tocsy and hmqc are selected for TOCSY Experiment and HMQC Experiment, respectively. Enter 0.012 as the Interspectral Tolerance for H. Select OK.

Information about the current stage of prototype pattern collection is displayed in the text window. The prototype pattern collection finishes quickly, and the following information appears in the text window:

     Nr of prototype patterns generated:(8) 
The 2D protopattern detection took 1 seconds

Also, a spreadsheet containing the 8 prototype patterns is displayed (Protopatterns table).

13.   Writing the result of prototype pattern detection into a file

Go to the Protopatterns table and select File/Save As. Set the Selection to br_protos.txt and select OK.

The text window shows information about the success of the action:

     Wrote table:   br:proto
Created file: ./br_protos.txt

14.   Visualizing prototype patterns

The next step is to visually inspect the prototype patterns. Several ways of seeing prototype patterns are provided through the Protopatterns spreadsheet: you can draw frequencies of prototype patterns as lines on top of a contour plot, spawn tiles, or draw a strip plot.

Click the Full Plot icon to make sure that the full HMQC spectrum is displayed.

Go to the Protopatterns table and select Preferences/Draw.

When the control panel appears, set Vertical Color to Blue and Horizontal Color to Green. Select OK.

Now click the third row of the table (i.e., select the third prototype pattern) and click the Draw icon.

On the HMQC spectrum, you see six lines on D1, and 12 lines on D2 if it is a full plot. Among the 12 lines on D2, only six are C13 lines, while the remaining six are the symmetrical images of the D1 H1 lines. You can recognize them based on whether they are correlated to any HMQC peaks.

You can also choose to display the TOCSY spectrum and then plot the prototype pattern on it.

Hold down the right mouse button and select the Clear Frequencies item from the menu that appears.

This clears the frequency lines on the spectrum.

15.   Making a tile plot of prototype pattern

The second way to visualize prototype patterns is to spawn tile plots from them. This allows you to concentrate only on frequencies and peaks belonging to them, which are present in this prototype pattern.

Select the third prototype pattern from the Protopatterns table and click the Tile Plot icon.

If you want to change the tile plot attributes, select the Preferences/Tile Plot menu item from the table.

The tile plot is displayed.

Press <Ctrl>-c (if you were in intensity plot mode) to see the contour plot of the HMQC spectrum tiled by this prototype pattern.

If you want to switch back to intensity plot mode, press <Ctrl>-i.

You can also display frequencies by clicking the Draw icon in the table.

16.   Making a strip plot of a prototype pattern

Using the tile plot functionality, you can concentrate on peaks and their immediate surroundings which belong to a prototype pattern. You can also use strip plots to see strips surrounding the frequencies in vertical or horizontal orientations.

Press <5> and use the large cross-hair cursor to pick one of the boxes.

This action (Jump) places only that small region on the screen and returns from tile plot mode.

Go to the Protopatterns table and select the third pattern. Select the Preferences/Strip Plot menu item. Set these parameters:

Shift Type Generic
Dimension D2_C13
Width 8
Scale 8

Select OK.

Click the Strip Plot icon in the table.

You see the seven HMQC peaks relevant to the frequencies of the third prototype pattern displayed in horizontal strips. You can also display the frequencies by selecting the Draw icon.

The strip plot helps you verify if there are outstanding peaks that have common chemical shifts with the frequencies in this prototype pattern.

17.   Copying a prototype pattern to the frequency clipboard

In practice, because of peak overlap or missing peaks, the automatically detected prototype patterns may have wrong connectivities, which need to be manually corrected. FELIX provides a set of tools to verify and edit the prototype patterns. These actions can be accessed from the pullright menu by selecting Analytical/Frequency. The first step in this procedure is to copy the frequencies of a certain prototype pattern to the frequency clipboard.

Detach the Frequency Clipboard item from the menu bar by selecting the Analytical/Frequency Clipboard item from the top row of the pullright menu. Place the Frequency Clipboard menu in a convenient location.

In the Frequency Clipboard menu, select Copy Proto To Clipboard. In the control panel that appears, select 3 from the List of Protos and select OK.

The third prototype pattern is now copied to the clipboard list. This list can be manipulated (you can add or delete frequencies to or from the list, swap the order of two frequencies, delete duplicate frequencies, sort the list, or zero the list). You can also display the list as lines on top of the matrix plot and spawn a tile and strip plot from it.

Select the Sort Clipboard menu item in the Frequency Clipboard menu. Now you can sort the frequencies in the clipboard in descending ppm order by toggling Descending order to on and then selecting OK.

You can see the sorted clipboard by selecting the View Clipboard item from the Frequency Clipboard menu. The result should look like this:

     The Frequency Clipboard List contains the following fre-
quencies:
# Freq(ppm) Atom
--- --------- ----
1 127.315 Y
2 64.597 Y
3 60.076 Y
4 56.463 Y
5 31.469 Y
6 26.774 Y
7 5.881 X
8 4.099 X
9 3.851 X
10 3.139 X
11 2.347 X
12 1.456 X

18.   Drawing the clipboard prototype pattern

As described in Step 11, you can use the Experiment Table to display the HMQC or TOCSY spectrum before viewing the prototype pattern.

Select the Draw Clipboard item from the Frequency Clipboard menu. Click Redefine Color in the control panel that appears and define D1 and D2 Color as Blue and Green, respectively. Select OK.

The spind system is displayed on the 2D spectrum.

To clear the display of the frequencies, click the right mouse button and select Clear Frequencies in the popup menu.

Similarly, you can select Tile Clipboard or Strip Plot Clipboard menu item from the Frequency Clipboard menu to display the clipboard spin system in tile or strip view. These tools are useful when you edit the prototype pattern in the clipboard, as shown in the next step.

19.   Editing the clipboard prototype patterns

If you find it necessary to edit the prototype pattern in the clipboard, choose the Add One, Delete One, Swap Two, or Remove Duplicates menu item in the Frequency Clipboard menu to add, remove, swap, or purge frequencies in the prototype pattern.

After you are finished editing, select the Copy Clipboard To Proto item from the Frequency Clipboard menu. In the control panel that appears, set Prototype Pattern to 3 and Overwrite to Mode. Then select OK,

The third prototype pattern in the Protopatterns table is updated.

20.   Import and display molecular structure

The prototype patterns usually give you an idea of the assignment of the frequencies to individual atoms in the molecule. Once you are ready to assign the resonances, you can input the chemical structure and interactively assign the resonances in a 1D or 2D peak table to the atoms.

Select the Analytical/Read Coordinates menu item. In the control panel, set File Type to MDL MOL files (.mol) and select file brucine.mol. Select OK.

The structure is displayed with atom labels on.

In the 1 Player control panel, select Zoom. Then drag the cursor around the structure to zoom the structure until it is satisfactory.

You can also rotate, translate, or reset the display by choosing options in the 1 Player control panel.

Since this is a planar structure (i.e., all Z coordinates are zero), you can only rotate it in the plane of the screen.

Click Exit in the 1 Player control panel to close it.

You can select the Analytical/Draw Molecule, Analytical/Label..., and Analytical/Color... menu items to redraw the molecule, change the display of labels, or change the colors if necessary.

Currently, all bonds are displayed as single lines. The carbonyl group C1=O19, double bond C1=C13, and phenyl ring consisting of C20- C25 are not displayed as such.

21.   Assigning 1D DEPT peaks to atoms

Select Preference/Frame Layout... and check 2 Frames Left/Right. Select OK.

Now there are two empty frames.

Highlight Frame 1 by clicking its title bar. Select Analytical/Draw Molecule to redraw the structure in Frame 1.

Highlight Frame 2 and highlight the DEPT experiment in the Analytical Experiments table.

If it is not open, select Analytical/Experiment... to open it.

Then click the Draw icon on the table.

The DEPT spectrum is displayed in the new frame. If the DEPT peak labels are not displayed, toggle on View/Draw Peaks.

Make sure Frame 2 is highlighted. Select Edit/Peaks to display the DEPT peaks in a Peaks-pic:dept table.

The values in the name column are all null, which means that the corresponding peaks are not assigned yet.

Now select the first peak (168.904 ppm) by highlighting the first row in the peak table.

From the chemical shift it obviously belongs to the only carbonyl carbon c1.

Select Peak/Assign One from the table and click c1 with the large crosshair cursor.

Notice that the name cell of peak 1 is now c1.

If you want to unassign a peak, highlight it and select Peak/Unassign One. The name of the peak is restored to null.

Once you are done with the assignment of the DEPT peak table, select File/Save As from the Peaks-pic:dept table to export the peak table with assignments. In the control panel, enter a filename, such as deptassign.txt, and select OK.

The DEPT assignments are stored in an ASCII file.

Select File/Close from the Peaks-pic:dept table to close it.

22.   Assigning the HMQC peaks to atoms

You can also assign the C13 frequencies in the HMQC peak table to the carbon atoms. Note that quaternary carbons are not present in the peak table, and that since hydrogen atoms are not explicitly displayed in the structure, you cannot assign the H1 frequencies to hydrogens.

Make sure Frame 2 is highlighted. Select HMQC experiment from the Analytical Experiments table.

If it is not open, select Analytical/Experiment... to open it.

Click the Draw icon in the Analytical Experiments table to display the HMQC spectrum.

Select Edit/Peaks.

The HMQC peaks are displayed in a Peaks-xpk:hmqc table. Notice that the column NameD1 and NameD2 are all nulls, which means that the corresponding frequencies are not assigned yet.

Now highlight 127.315 (or the NameD2 cell just next to it) in the third row.

From the chemical shift it obviously belongs to the sp2 methine carbon C11. (Remember that double bonds are not displayed.)

Select Peak/Assign One from the table and click C11 with the large crosshair cursor.

You'll notice that the name cell of this frequency changes to C11.

If you want to unassign a frequency, highlight it (either the chemical shift or the name) and select Peak/Unassign One. The name of the peak is restored to null.

Once you are done with assignment of the HMQC peak table, select File/Save As from the Peaks-xpk:hmqc table to export the peak table with assignments. In the control panel, enter a filename, such as hmqcassign.txt, and select OK.

The HMQC assignments are stored in an ASCII file.

23.   Exiting FELIX

To exit FELIX, select the File/Exit menu item.